SODAQ

Jan Willem Smeenk

LPWAN started with Sigfox

- First I PWAN network
- Unlicensed spectrum
 - o 868 MHz Europe
 - o 902 MHz USA
- Ultra Narrow Band
- 12 bytes data payload
- 140 messages per day
- Simplex, one way traffic

and then LoRa

- Same unlicensed spectrum as SigFox
- Spread spectrum
- 51 bytes payload
- ~ 300 messages per day upload
- ~ 30 messages per day download
- 154 dB link budget

And now 4G: LTE-M and NB-IoT

- Regulated (Licensed) spectrum
 - no duty cycle limits
- Extreme good coverage
- Deep indoor penetration
 - o NB-IoT 164 dB link budget
 - o LTE-M 156 dB link budget
- 100 messages of 500 bytes/day
 - o approx. €1 € 2 per month

Now what are the differences?

SigFox and LoRa are stateless

Device broadcasts a message which is received by a gateway

or not....

LoRa communication concept

LoRa

- fixed duration
- fixed power usage
- SF 12
 - o 5.4 seconds
 - 95μWh
 - o max 43mA

LoRa

- SF 7
 - o 2.7 seconds
 - \circ 13 μ Wh

SF7		
messages per hour	4	
power per message	13 μWh	
time on air	3 seconds	
microcontroller power when active	15 mW	
microcontroller when sleeping	15 μW	
Total power per hour	79.5 μWh	
SF12		
messages per hour	4	
power per message	95 μWh	
time on air	5.4 seconds	
microcontroller power when active	15 mW	
microcontroller when sleeping	15 μW	
Total power per hour	417.5 μWh	

SAFT LS14500

- 2600 mAh
- ~ 8000 mWh
- SF-7
 - o 100.000 hours
 - 11 years
- SF-12
 - o 20.000 hours
 - o 2.2 years

LoRa

- Very low power consumption possible
- Try using lowest SF
 - Geolocation requires higher SF (11?)
- Ideal for private networks
- Message delivery not guaranteed
- Place gateways close to devices to solve this

NB-IoT and LTE-M concept

CONNECTED eDRX

- DRX cycles extended from 2.56 seconds:
 - To 9.22 seconds in NB-IoT

IDLE eDRX

- New Paging Time Window which allows longer paging cycles:
 - 3 hours in NB-IoT

NB-IoT

- Send UDP datagram3.1 seconds
 - 70 μWh
 - o max 115mA
- Only when signal is good!Additional power needed
- for:

 o establishing session
 - o (e)DRX

LoRa and NB-IoT compared

- Under good signal conditions:
 - LoRa SF12 and NB-IoT have similar power consumption
- Under poor signal condition
 - LoRa messages don't arrive
 - NB-loT power consumption will be high and difficult to control
- LoRa is limited in data throughput
- NB-IoT has better link budget
- LoRa can be private network (cheap)
- NB-IoT commercial networks have much better coverage

LTE-M

- alternative to NB-IoT
- ~ 156 dB MCL
- much higher data rates
- full TCP/IP support
- voice support (VoLTE)
- > 300mA peaks
- still under development
 - PSM not supported yet

Questions?